Mid-Jurassic volcanism at Bokhara River and insights into metasomatism in the lithospheric mantle of the Thomson Orogen, eastern Australia

J. Shea^{a,b}, S. Foley^{a,c}, H. Dalton^d, A. Lanati^{a,e}, and D. Phillips^d

^aSchool of Natural Sciences, Macquarie University, Sydney, Australia; ^bThe Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom; ^cResearch School of Earth Sciences, Australia National University, Canberra, Australia; ^dSchool of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Australia; ^eInstitut für Mineralogie, Universität Münster, Münster, Germany

CONTACT Joshua Shea email jjs83@cam.ac.uk mail Downing Street, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom

ORCID

- J. Shea <u>https://orcid.org/0000-0001-7869-1479</u>
- S. Foley <u>https://orcid.org/0000-0001-7510-0223</u>
- H. Dalton <u>https://orcid.org/0000-0003-2114-9894</u>
- A. Lantani https://orcid.org/0000-0002-3317-5697
- D. Phillips https://orcid.org/0000-0001-7256-6730

Received 18 July 2023; accepted 23 December 2023 Editorial Handling: Chris Fergusson

SUPPLEMENTAL DATA

Australian Journal of Earth Sciences (2024), 71(3), https://doi.org/10.1080/08120099.2024.2302360

Copies of Supplementary Papers may be obtained from the Geological Society of Australia's website (<u>www.gsa.org.au</u>), the Australian Journal of Earth Sciences website (www.ajes.com.au) or from the National Library of Australia's Pandora archive (<u>https://pandora.nla.gov.au/tep/150555</u>).

Supplemental data

Table S1. EPMA analytical conditions.

- *Table S2. Major element (oxide wt%) and trace element (ppm) results for the magmatic component of the diatreme.
- *Table S3. Major element (wt% oxide) and trace element (ppm) results for the spinel lherzolite xenoliths.
- *Table S4. Average olivine composition for each spinel lherzolite.
- *Table S5. Average orthopyroxene composition for each spinel lherzolite.
- *Table S6. Average clinopyroxene composition for each spinel lherzolite.
- *Table S7. Average spinel composition for each spinel lherzolite.
- Figure S1. Photomicrographs in (a) cross-polarised and (b) reflected light.

Figure S2. (a) ⁴⁰Ar/³⁹Ar step heating spectra for sample 1201 showing the steps selected for the weightedmean age and annotated with step numbers; (b) inverse isochron plots calculated from steps 9 to 21, i.e., the flattest part of the spectrum; and (c) inverse isochron plot calculated from the 7 steps included in weighted mean calculation shown in (a).

*Full data in excel workbooks at https://zenodo.org/records/10450582

Shea et al. (2024). Supplemental data Australian Journal of Earth Sciences, 71(3), <u>https://doi.org/10.1080/08120099.2024.2302360</u>

Elements	Channel	nnel Analysing Peak Lowe		Lower	Upper background	Acquisition	Acquisition
		Crystar	(mm)	background	background		hookaround
			(1111)	position	position	(S)	Dackground
				(mm)	(mm)		(s)
Si	1	TAP	77.796	2.500	2.500	20	10
Al	1	TAP	90.931	4.000	4.000	20	10
К	2	PETL	119.914	5.000	5.000	10	5
Ca	2	PETL	107.670	3.000	3.000	15	7
Ti	2	PETL	88.192	2.000	2.000	15	7
Р	3	PETL	197.076	5.000	5.000	10	5
Ni	4	LIFL	115.461	3.000	3.000	15	7
Fe	4	LIFL	134.761	3.000	3.000	10	5
Mn	4	LIFL	146.274	5.000	5.000	15	7
Cr	4	LIFL	159.304	5.000	5.000	15	7
Na	5	TAPH	129.407	3.000	3.000	10	5

Table S1. EPMA analytical conditions.

Shea et al. (2024). Supplemental data Australian Journal of Earth Sciences, 71(3), <u>https://doi.org/10.1080/08120099.2024.2302360</u>

Table S2. Major element (oxide wt%) and trace element (ppm) results for the magmatic component of the diatreme. Mg# assumes 0.9 FeO in FeO_t. Depth is distance of sample below surface. Due to the downhole major element chemical consistency an average composition is given, and for the same reason only three samples were analysed for trace elements. "Melt" is an estimated melt composition of the magmatic component with 12.8 wt% olivine removed to give a melt composition is in equilibrium with olivine Fo₉₀ assuming a $K_{D,Fe-Mg}^{ol/melt}$ of 0.30.

Sample	1201	1202	1203	1204	1205	1206	1207	1208	1209	Avg.	Melt
Depth (m)	315.8	316.2	322.7	324.5	326.9	392.4	345.7	307.9	311.6	_	-
SiO ₂	42.56	42.3	42.45	42.05	42.43	42.04	42.06	42.38	41.65	42.21	44.10
TiO ₂	2.06	1.93	2.00	2.06	1.97	2.06	2.05	1.98	2.08	2.02	2.37
Al ₂ O ₃	11.77	11.23	11.57	11.38	11.53	11.59	11.68	11.59	11.66	11.56	13.54
FeOt	10.72	10.56	10.63	10.63	10.3	10.51	10.54	10.33	10.41	10.51	11.06
MnO	0.17	0.17	0.17	0.17	0.17	0.17	0.18	0.17	0.17	0.17	0.18
MaO	15.61	16.67	16.37	16.53	16.45	16.12	15.39	16.34	15.6	16.12	12.29
CaO	9.71	9.51	9.44	9.42	9.35	9.55	9.63	9.36	9.64	9.51	11.14
Na ₂ O	3.11	2.57	2.94	2.87	2.83	3.03	3.06	2.96	2.78	2.91	3.39
K ₂ O	1 00	1 00	1 01	0.86	1 07	1 05	1 11	0.93	0.80	0.98	1 02
P ₂ O ₅	0.78	0.74	0.74	0.76	0.76	0.79	0.78	0.78	0.78	0.77	0.90
	2 01	2 75	1 99	2 43	2 15	1 47	1 99	2.08	2 77	2 18	
Total	00.5	00 /3	00.3	00 15	90.02	08.30	98.45	08.88	08.34	08.04	00 00
Na#	76.01	99.40 77.65	99.0 77 00	99.10 77.00	99.02 77.05	90.39 77 15	90.40 76.00	90.00 77.60	90.04 76 74	90.94 77 10	33.33 71.00
IVIG#	70.21	11.05	11.22	11.30	77.00	77.15	70.20	11.00	70.74	11.13	71.00
LI						5.1	5.2		5.3		
Be						2.3	2.2		2.2		
SC T						25.6	27.6		27.8		
						6719	6881		13029		
V						200	206		208		
Cr						491	479		474		
Mn						1311	1358		1330		
Со						59	59		58		
Ni						565	511		525		
Cu						62.1	71.3		68.5		
Zn						83	80		91		
Ga						15.5	15.9		15.8		
Rb						26.9	28.8		14.8		
Sr						881	889		805		
Y						21	24		22		
Zr						110	100		196		
Nb						28	33		65		
Cd						0.08	0.09		0.10		
Cs						0.6	0.6		0.6		
Ba						423	460		469		
La						46	46		46		
Ce						89	88		90		
Pr						10	10		10		
Nd						38	37		37		
Sm						6.68	6.66		6.71		
Eu						2.13	2.14		2.13		
Gd						0.79	0.81		0.79		
Tb						5.59	5.66		5.55		
Gd						3.90	4.18		3.90		
Dv						0.72	0.80		0.72		
Ho						1.88	2 12		1.88		
Fr						1 45	1 69		1 46		
 Tm						0.20	0.24		0.20		
Yb						1.63	1 44		3.52		
1						0.98	1 04		3 10		
Hf						2 24	3 00		1 74		
Та						2.27	3 18		3 13		
W						6.07	5.10		5.06		
Ph						1.60	1.52		1 57		
Th						5.1	1.00 E 0		1.57		
111						ບ. ເ ດູດ	0.Z		0.0 0.0		
0						∠.ა	2.2		2.2		

Table S3. Major element (wt% oxide) and trace element (ppm) results for the spinel lherzolite xenoliths. Mg# assumes 0.8 FeO in FeO_t. Depth is distance below surface. P-T for each sample is calculated using (BKN90; Brey *et al.*, 1990) for pressure and (Köhler & Brey, 1990) for temperature. An additional xenolith without whole-rock data (1208X1) has a *P* of 1.6 GPa and *T* of 1153 °C.

Sample	1202X1	1204X1	1206X1	1206X2	1207X1
Depth (m)	316.1	324.4	392.2	392.4	345.7
SiO ₂	43.73	45.70	44.28	42.34	44.28
TiO ₂	0.15	0.14	0.08	0.14	0.08
Al ₂ O ₃	3.11	3.44	3.00	3.83	2.87
FeOt	9.61	8.39	9.48	11.48	9.74
MnO	0.13	0.13	0.13	0.15	0.14
MgO	37.80	33.62	38.11	37.28	39.10
CaO	3.37	5.90	2.99	2.64	2.78
Na ₂ O	0.01	0.06	0.01	0.04	0.16
K ₂ O	0.25	0.25	0.18	0.42	1.33
P ₂ O ₅	0.00	0.01	0.00	0.01	0.02
Total	100.48	100.79	100.92	100.52	101.78
Mg#	89.76	89.93	89.96	87.86	89.95
P (GPa; KB90)	1.2	1.6	2.0	1.6	1.8
/ (°C; BKN90)	1155	1119	1098	1166	1139
Li		3.9	2.4	2.4	3.0
Be	< 0.0	< 0.0	< 0.0	0.1	< 0.0
5C	16.2	22.0	15.3	17.9	14.6
	921	1050	752	1130	7/0
V Cr	1510	90	1602	0/	1652
Mn	1010	2170	000	1100	1055
	990	930 79	990	104	990
Ni	1028	1530	1053	1766	99 2050
Cu	29.6	37.2	30.0	4.3	32.0
Zn	48	43	43	63	48
Ga	36	38	33	60	33
Bb	0.0	1.8	0.9	0.9	17
Sr	8	12	3	19	13
Ŷ	3.5	4.1	2.9	2.0	2.7
Zr	5.1	5.1	3.0	6.8	3.4
Nb	0.3	1.4	0.6	0.6	0.9
Cd	0.03	0.03	0.02	0.03	0.03
Cs	< 0.0	< 0.0	< 0.0	< 0.0	< 0.0
Ва	1.7	5.0	0.8	2.1	18.0
La	0.2	0.9	0.3	0.6	0.5
Ce	0.4	1.8	0.7	1.6	1.0
Pr	0.1	0.2	0.1	0.2	0.1
Nd	0.4	1.0	0.4	1.1	0.5
Sm	0.18	0.31	0.15	0.32	0.15
Eu	0.08	0.11	0.06	0.11	0.06
Gd	0.28	0.41	0.23	0.32	0.22
Tb	0.06	0.08	0.05	0.05	0.04
Gd	0.32	0.44	0.26	0.33	0.24
Dy	0.44	0.56	0.36	0.30	0.32
Ho	0.10	0.13	0.08	0.06	0.07
Er	0.30	0.37	0.25	0.17	0.22
im Vh	0.17	0.21	0.15	0.09	0.13
ΥD Lu	0.29	0.36	0.26	0.17	0.24
	0.04	0.05	0.04	0.02	0.04
	0.14	0.13	0.07	0.16	0.08
1d W/	0.03	U. 18 2 10	0.00	U.U0 / EE	0.09
vv Ph	1.03	0.19 0.19	1.01	4.00	3.U0 0.27
Th	0.10	0.10	0.09	0.10	0.37
U	0.02	0.03	0.04	0.05	0.00
~		0.00	0.01	0.01	0.07

Table S4. Average olivine composition for each spinel lherzolite. 1σ errors are propagated errors from each individual analysis. *n* is the number of analyses of individual grains.

Sample	1202x1	1σ	1204x1	1σ	1206x1	1σ	1206x2	1σ	1207x1	1σ	1208x1	1σ	
п	15		15		15		15	15		15		15	
SiO ₂	39.82	0.24	40.41	0.24	39.54	0.24	39.95	0.24	40.38	0.24	40.32	0.24	
TiO ₂	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	
Al ₂ O ₃	0.03	0.05	0.03	0.05	0.02	0.05	0.03	0.05	0.03	0.05	0.02	0.05	
Cr_2O_3	0.01	0.05	0.03	0.05	0.02	0.05	0.02	0.05	0.03	0.05	0.02	0.05	
FeOt	10.48	0.14	10.27	0.14	10.17	0.14	11.70	0.15	10.10	0.14	10.30	0.14	
MnO	0.14	0.02	0.14	0.02	0.13	0.02	0.16	0.02	0.14	0.02	0.13	0.02	
MgO	48.48	0.20	48.49	0.20	48.42	0.20	47.45	0.20	48.57	0.20	48.65	0.20	
CaO	0.10	0.01	0.11	0.01	0.12	0.01	0.11	0.01	0.11	0.01	0.08	0.01	
Na ₂ O	0.02	0.04	0.01	0.04	0.01	0.04	0.01	0.04	0.01	0.04	0.01	0.04	
K ₂ O	< 0.00	0.02	0.01	0.02	< 0.00	0.02	< 0.00	0.02	< 0.00	0.02	< 0.00	0.02	
P_2O_5	0.02	0.08	0.01	0.07	0.01	0.08	0.01	0.08	0.01	0.07	0.01	0.07	
NiO	0.37	0.03	0.35	0.03	0.37	0.03	0.34	0.03	0.35	0.03	0.38	0.03	
Total	99.88	0.90	99.89	0.89	99.86	0.89	99.92	0.90	99.89	0.89	99.92	0.90	
Mg#	89.05	0.52	89.24	0.52	89.34	0.52	87.70	0.52	89.42	0.52	89.26	0.52	

Table S5. Average orthopyroxene composition for each spinel lherzolite. 1σ errors are propagated errors from each individual analysis. *n* is the number of analyses of individual grains.

Sample	1202x1	1σ	1204x1	1σ	1206x1	1σ	1206x2	1σ	1207x1	1σ	1208x1	1σ	
п	20		20)	20		20	20		20		20	
SiO ₂	53.64	0.24	54.31	0.24	53.82	0.24	53.37	0.24	54.14	0.24	54.35	0.24	
TiO ₂	0.13	0.02	0.10	0.02	0.09	0.02	0.18	0.02	0.10	0.02	0.10	0.02	
AI_2O_3	5.46	0.15	5.32	0.14	5.39	1.00	5.36	0.14	5.66	0.15	5.28	0.14	
Cr ₂ O ₃	0.42	0.07	0.60	0.08	0.48	0.01	0.56	0.07	0.54	0.07	0.41	0.07	
FeOt	6.51	0.10	6.47	0.09	6.35	0.09	7.57	0.10	6.31	0.09	6.44	0.09	
MnO	0.14	0.02	0.14	0.02	0.15	0.02	0.16	0.02	0.14	0.02	0.15	0.02	
MgO	32.78	0.14	32.62	0.14	32.90	0.14	31.21	0.14	32.53	0.14	32.17	0.14	
CaO	0.97	0.02	1.18	0.02	1.05	0.02	1.19	0.02	1.19	0.02	0.91	0.02	
Na ₂ O	0.14	0.04	0.06	0.04	0.12	0.04	0.09	0.04	0.11	0.04	0.11	0.04	
K ₂ O	0.01	0.01	< 0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.03	< 0.00	0.01	
P_2O_5	0.01	0.06	0.01	0.07	0.10	1.39	0.01	0.10	0.01	0.06	0.01	0.05	
NiO	0.10	0.02	0.10	0.023	0.01	0.003	0.10	0.026	0.11	0.023	0.11	0.022	
Total	100.30	0.88	100.91	0.90	100.45	2.99	99.78	0.94	100.84	0.90	100.04	0.87	
Mg#	89.98	0.55	89.99	0.55	90.23	0.55	88.03	0.55	90.19	0.55	89.90	0.55	
Wo	1.88	0.03	2.28	0.04	2.03	0.04	2.34	0.04	2.31	0.04	1.79	0.03	
En	88.10	0.53	87.74	0.53	88.20	0.54	85.74	0.53	87.91	0.53	88.09	0.54	
Fs	10.02	0.15	9.98	0.15	9.77	0.14	11.91	0.16	9.78	0.15	10.12	0.15	

Table S6. Average clinopyroxene composition for each spinel lherzolite. 1σ errors are propagated errors from each individual analysis. *n* is the number of analyses of individual grains.

Sample	1202x1	1σ	1204x1	1σ	1206x1	1σ	1206x2	1σ	1207x1	1σ	1208x1	1σ	
n	20		20		20	20		20		20		20	
SiO ₂	51.17	0.23	51.60	0.23	51.28	0.23	50.75	0.23	51.61	0.23	51.83	0.23	
TiO ₂	0.41	0.03	0.27	0.02	0.30	0.02	0.44	0.02	0.30	0.02	0.36	0.02	
Al ₂ O ₃	6.84	0.16	5.82	0.14	6.40	0.90	6.28	0.15	6.60	0.15	6.62	0.15	
Cr ₂ O ₃	0.70	0.08	0.86	0.09	0.77	0.01	0.86	0.09	0.83	0.09	0.72	0.08	
FeOt	3.36	0.07	3.47	0.07	3.18	0.07	4.41	0.08	3.38	0.07	3.09	0.07	
MnO	0.11	0.02	0.10	0.02	0.10	0.02	0.10	0.02	0.10	0.02	0.09	0.02	
MgO	17.00	0.10	17.08	0.11	16.57	0.10	16.33	0.11	16.84	0.10	15.78	0.10	
CaO	18.27	0.11	20.04	0.07	19.56	0.07	19.22	0.07	19.18	0.07	19.48	0.07	
Na ₂ O	1.39	0.13	0.68	0.07	1.18	0.08	0.86	0.07	1.09	0.08	1.36	0.09	
K ₂ O	0.01	0.02	0.01	0.02	0.02	0.01	0.01	0.02	0.01	0.02	0.01	0.02	
P_2O_5	0.02	0.29	0.01	0.07	0.06	0.23	0.00	0.09	0.02	0.13	0.01	0.10	
NiO	0.00	0.03	0.00	0.02	0.00	0.01	0.05	0.02	0.00	0.03	0.00	0.02	
Total	99.34	1.27	100.00	0.93	99.43	1.77	99.12	0.96	100.01	1.02	99.39	0.97	
Mg#	89.96	0.75	89.87	0.78	90.55	0.81	86.87	0.79	89.91	0.79	90.15	0.81	
Wo	41.27	0.30	43.01	0.22	43.30	0.22	40.37	0.21	42.31	0.22	44.36	0.23	
En	52.69	0.38	51.01	0.37	51.03	0.37	51.67	0.38	51.69	0.37	49.99	0.36	
Fs	6.04	0.13	5.99	0.13	5.66	0.13	7.96	0.15	6.00	0.13	5.65	0.13	

Table S7. Average spinel composition for each spinel lherzolite. 1σ errors are propagated errors from each individual analysis. *n* is the number of analyses of individual grains.

Sample	1202x1	1σ	1204x1	1σ	1206x1	1σ	1206x2	1σ	1207x1	1σ	1208x1	1σ	
п	15		15		14	14		15		15		15	
SiO ₂	0.08	0.04	0.10	0.04	0.08	0.04	0.10	0.04	0.10	0.03	0.06	0.04	
TiO ₂	0.16	0.02	0.22	0.02	0.14	0.02	0.51	0.03	0.16	0.02	0.14	0.02	
AI_2O_3	57.39	0.50	51.43	0.47	55.99	0.51	48.79	0.46	54.52	0.48	57.29	0.50	
Cr ₂ O ₃	9.58	0.28	15.24	0.35	11.25	0.31	15.19	0.34	12.08	0.31	10.25	0.29	
FeOt	10.63	0.13	12.09	0.14	10.66	0.14	16.06	0.16	11.07	0.14	10.70	0.13	
MnO	0.11	0.02	0.12	0.02	0.11	0.02	0.14	0.02	0.11	0.02	0.12	0.02	
MgO	20.58	0.13	19.22	0.12	20.16	0.13	17.84	0.12	20.13	0.13	20.63	0.13	
CaO	0.01	0.07	0.01	0.02	0.02	0.02	0.01	0.02	0.01	0.02	0.01	0.25	
Na ₂ O	0.01	0.07	0.01	0.21	0.01	0.07	< 0.00	0.08	0.01	0.06	0.01	0.82	
K ₂ O	< 0.00	0.09	< 0.00	0.02	0.01	0.06	< 0.00	0.03	< 0.00	0.01	< 0.00	0.01	
P_2O_5	0.01	0.06	0.01	0.07	0.01	0.10	0.01	0.15	0.01	0.08	0.01	0.07	
NiO	0.38	0.03	0.32	0.03	0.36	0.03	0.33	0.03	0.35	0.03	0.36	0.03	
Total	98.40	1.45	98.40	1.52	98.43	1.45	98.40	1.49	98.40	1.33	98.40	2.31	
Mg#	79.41	0.52	76.10	0.68	78.50	0.68	70.73	0.68	78.77	0.68	79.36	0.68	
Cr#	10.05	0.13	16.55	0.13	11.86	0.13	17.25	0.13	12.92	0.16	10.69	0.13	

References

- Brey, G. P., Köhler, T., & Nickel, K. G. (1990). Geothermobarometry in four-phase Iherzolites I. Experimental results from 10 to 60 kb. *Journal of Petrology*, *31*, 1313–1352. <u>https://doi.org/10.1093/petrology/31.6.1313</u>
- Köhler, T. P., & Brey, G. P. (1990). Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. *Geochimica et Cosmochimica Acta, 54*, 2375–2388. https://doi.org/10.1016/0016-7037(90)90226-B
- Ludwig, K. R. (2003). User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Special

publication, Berkeley Geochronology Center.

Figure S1. Photomicrographs in (a) cross-polarised and (b) reflected light. This shows the anhedral disaggregated mantle xenocryst cargo, spinel and olivine phenocrysts, along with the fine-grained quench in the groundmass.

Figure S2. (a) ⁴⁰Ar/³⁹Ar step heating spectra for sample 1201 showing the steps selected for the weightedmean age and annotated with step numbers; (b) inverse isochron plots calculated from steps 9 to 21, i.e., the flattest part of the spectrum; and (c) inverse isochron plot calculated from the 7 steps included in weighted mean calculation shown in (a). Note all ages overlap within uncertainty. The age spectra and inverse isochrons were generated using ISOPLOT (Ludwig, 2003).